You may slide your HW under my office door (Rm 311) if I am not available in the office when you bring by the HW on Tuesday 10/30.

Problems marked with as asterisk are more challenging and/or calculationally involved. Do the other ones first, if you prefer. Come to me or talk to each other if you would like help/hints. I encourage discussion among you, but all submitted work must be your own.

Problem \#1
Angular Momentum

Problem \#2 Rotating Frames

Show that the angular momentum around an axis that goes through the center of mass can be written as

$$
\begin{equation*}
L_{i}=\sum_{n} m_{n}\left(x_{k} x_{k} \omega_{i}-x_{i} x_{k} \omega_{k}\right)=I_{i k} \omega_{k} \tag{1}
\end{equation*}
$$

The derivation of the equation of motion (Eq. 9.34) for a rotating frame made the assumptions that the angular velocity $\boldsymbol{\Omega}$ was constant. Show that if $\dot{\boldsymbol{\Omega}} \neq 0$, then there is a third "fictitious force" sometimes called the azimuthal force, on the right-hand-side of (9.34), equal to $m \mathbf{r} \times \dot{\boldsymbol{\Omega}}$.

On a certain planet, which is perfectly spherically symmetric, the free-fall acceleration has magnitude
Problem \#3

Centrifugal Force $g=g_{0}$ at the North Pole, and $g=\lambda g_{0}$ at the equator (λ is a constant between 0 and 1). Find $g(\theta)$, the free-fall acceleration at angle θ with repect to the axis passing through both poles.

Problem \#4 Repeat the derivation of the equation of motion for the "bead on a rotating wire" (Example 7.6 in Coriolis Force
the textbook). Instead of using Lagrangian methods, use the expression for the acceleration in a rotating reference frame, Eq. (9.34). Check that your result for the equation of motion agrees with Eq. 7.69. Use a free-body diagram to explain the result for the stationary points of the system.

