Problems marked with as asterisk are more challenging and/or calculationally involved. Do the other ones first, if you prefer. Come to me or talk to each other if you would like help/hints. I encourage discussion among you, but all submitted work must be your own.

Problem \#1 Viral Theorem

(a) A mass m moves in a circular orbit (centered on the origin) in the field of an attractive central force with potential energy $U=k r^{n}$. Prove the Virial Theorem, that $T=n U / 2$.
(b) There is a more general version of this theorem that applies to any periodic orbit of a particle: Find the time derivative of the quantity $G=\mathbf{r} \cdot \mathbf{p}$, and, by integrating from time 0 to t, show that

$$
\begin{equation*}
\frac{G(t)-G(0)}{t}=2\langle T\rangle+\langle\mathbf{F} \cdot \mathbf{r}\rangle \tag{1}
\end{equation*}
$$

where \mathbf{F} is the net force on the particle, and $\langle f\rangle$ denotes the average over time of any quantity f.
(c) Use this result to prove that if \mathbf{F} arises from a potential energy $U=k r^{n}$, then $\langle T\rangle=n\langle U\rangle / 2$, so long as we take the average over a very long time.

Problem \#2

Conservation

 LawsThis question shows the power of conserved quantities. Consider a particle in a smooth monotonic attractive central potential $V(r)$. At time $t=0$ the particle is at a point \vec{r}_{0} and has velocity \vec{v}_{0}. It is given that the velocity is inward, that is, $r(t=\epsilon)<r(t=0)$ (where, as always, it is implicit that ϵ is very small compared to all other time scales in the problem).
(a) The two conserved quantities in the problem ar E and \vec{L}. Calculate them based on the initial conditions.
(b) In terms of angles, the above conserved quantities should depend only on the angle between \vec{r}_{0} and \vec{v}_{0}. Verify that this is indeed the case in your answer and explain why.
(c) We try to find the point the particle is closest to the origin, $r_{\text {min }}$. What is the value of the radial velocity at that point, $\left.\dot{r}\right|_{r_{\text {min }}}$? What is the angle between \vec{r} and \vec{v} there?
(d) Using the value of the conserved quantities, write the equations that can be used to find $r_{\text {min }}$.

Problem \#3 Consider a particle of mass m in the following one dimensional potential
A symmetric well potential

$$
\begin{equation*}
V(x)=a x^{2 n} \tag{2}
\end{equation*}
$$

where n is a positive integer and $a>0$.
(a) What are the units of a ?
(b) Calculate the period of the particle as a function of its energy. You will need the following integral

$$
\begin{equation*}
\int_{-1}^{1} d x\left(1-x^{2 n}\right)^{-1 / 2}=2 \sqrt{\pi} \Gamma\left(1+\frac{1}{2 n}\right) \Gamma\left(\frac{n+1}{2 n}\right)^{-1} . \tag{3}
\end{equation*}
$$

(c) Show that the period is independent on the energy only for the harmonic case, that is, $n=1$.

