Last time Massive spin-1
1) Most general \(F \) has just 4 scalars
2) Restrict so only 3 dof: \(F_{\mu\nu} \)
3) 3 pol. vectors, 2 transverse, 1 long.
4) long: scattering badly behaved

Massless Spin-1 and Gauge invariance

\[m \to 0 \text{ limit } \quad \mathcal{L} = -\frac{1}{4} F_{\mu\nu}^2 \]

Issues:
1) \(m^2 (\partial \mu A^\mu) = 0 \) imposes no constraint
2) \(\varepsilon_\mu = (R^\mu_\mu 0, 0, 0, E) \to \infty \)
3) Should only have 2 \(\to \) seem to have 4 again

Note that \(F \) has a gauge invariance:

\[A_\mu \to A_\mu + \partial_\mu \alpha(x) \]

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_\mu A_\nu + \partial_\nu A_\mu \]

Under any function \(\partial_\mu A_\nu + \partial_\nu A_\mu \]

\[= F_{\mu\nu} \]

\[\Rightarrow 2 \text{ field configurations for some physics} \]

\[\square A_\mu + \partial_\mu \partial_\nu A^\nu = 0 \to \begin{cases} \partial A_0 + \partial_0 (\partial A_0) = 0 \\ \partial A_i - \partial_0 (\partial_0 A_0 - \partial_i A_i) = 0 \end{cases} \]

\[\Rightarrow \square A_0 = 0 \text{ and } \square A_i - \partial_0 (\partial_0 A_0 - \partial_i A_i) = 0 \]

\[\Rightarrow \] no time derivative, and same equation as \(\alpha \)

\[\Rightarrow \text{can choose } \alpha \text{ to eliminate } A_0 \]

\[\text{and we still have constraint } \partial_0 A_i = 0 \]

\[\text{So have } A_0 = 0, \text{ and } \vec{p} \cdot \vec{A} = 0 \]

\[\text{Eq. } p^\mu = (E, 0, 0, E) \Rightarrow E_0 = 0 \]

\[\varepsilon_1 = (0, 1, 0, 0) \quad \varepsilon_2 = (0, 0, 1, 0) \]

\[\varepsilon_3 = 0 \]

\[\text{Sample basis} \]
"Little group" consider p^μ fixed \(\rightarrow \) i.e. $p^\mu = (m, 0, 0, 0)$ (massive)

\[\rightarrow \) SU(2) x-forms leading this fixed are 3D rotations \(\rightarrow \) $SO(3) \rightarrow SO(4)$, $2J + 1$ d.o.f.

$p^\mu = (E, 0, 0, E) \rightarrow ISp(2) \) spin \) J, 2 d.o.f.

\(\rightarrow \) Symmetries of momentum states determine classification of all particles

Covariant Derivatives cannot break gauge invariance anywhere or "sick" modes come back

* Interactions must respect gauge invariance.

Quantum corrections will affect d.o.f. counting

Example \(\phi (\partial \mu \phi) A^\mu \rightarrow \phi (\partial \mu \phi) A^\mu + \phi (\partial \mu \phi) (\partial^\mu \phi) \) extra term

\(\phi \) must transform as well to compensate!

(only possible x-form of real scalar field)

\(\phi \rightarrow \) complex \(\phi \rightarrow e^{-i\xi(x)} \phi \)

\(m^2 |\phi|^2 \) invariant, derivatives are not

\(\phi \rightarrow e^{-i\xi(x)} \phi \)

now \((\partial_\mu + i e A_\mu) \phi \rightarrow (\partial_\mu + i e A_\mu + i e \partial^\mu \phi) e^{-i\xi(x)} \phi \)

\[= e^{-i\xi(x)} (\partial_\mu - i e \partial^\mu A_\mu + i e \partial^\mu \phi) \phi \]

\[= e^{-i\xi(x)} (\partial_\mu + i e A_\mu) \phi \]

\(\Rightarrow \ D_\mu \phi \rightarrow e^{-i\xi(x)} \frac{D_\mu \phi}{D_\mu} \)

Spin-1 x-spin0 interacting theory

\[S = -\frac{1}{4} F_{\mu\nu}^2 + |D_\mu \phi|^2 - m^2 |\phi|^2 \]

\(\rightarrow \) contains interaction terms
This is the Lagrangian for scalar QED
(-e) is "electric charge" of \(\phi \)

\[D_\mu \phi = (\partial_\mu - ieQA_\mu)\phi \]

\(D_\mu \) depends on the field it acts on

* Note could take \(\alpha(x) \to \) constant (global continuous symmetry)

then Noether's theorem applies as we derived it

\[J_\mu = -i(\phi \partial_\mu \phi^* - \phi^* \partial_\mu \phi) - 2eA_\mu \phi^* \phi \]

usual quadratic part part due to interactions

forces relationship between 2 point + 3 point correlators!

Note \[\mathcal{L} = -\frac{1}{4} F_{\mu \nu} + \text{Kinetic terms} + A_\mu J^\mu \]

for fields

always takes this form

Quantization

\[A^\mu = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \sum_{\delta=1}^{3} (e_\delta^\mu (p) \tilde{a}_\delta^\dagger e^{-ipx} + e_\delta^* (p) a_\delta e^{ipx}) \]

\[a_\delta^\dagger \]\] \(\phi \) type polarization basis vectors \(\omega_p \) \(+2\) trans.

\[\langle 0 \mid a^\dagger_\delta (p, e^\dagger_\delta) \rangle = \frac{1}{\sqrt{2\omega_p}} \]

\[\langle 0 \mid A^\mu (p, e^\dagger_\delta) \rangle = e^{i\phi} e^{-ipx} \]

creates particle at position \(x \) with pol. \(e^\dagger_\delta \)